• scikit-bio™ is an open-source, BSD-licensed, python package providing data structures, algorithms, and educational resources for bioinformatics.

    Note: scikit-bio is no longer compatible with Python 2. scikit-bio is compatible with Python 3.6 and later.

    scikit-bio is currently in beta. We are very actively developing it, and backward-incompatible interface changes can and will arise. To avoid these types of changes being a surprise to our users, our public APIs are decorated to make it clear to users when an API can be relied upon (stable) and when it may be subject to change (experimental). See the API stability docs for more details, including what we mean by stable and experimental in this context.

    快联官网下载安卓-旋风加速度器

    The recommended way to install scikit-bio is via the conda package manager available in Anaconda or miniconda.

    To install the latest release of scikit-bio:

    conda install -c http://conda.anaconda.org/biocore scikit-bio
    

    Alternatively, you can install scikit-bio using pip:

    pip install numpy
    pip install scikit-bio
    

    You can verify your installation by running the scikit-bio unit tests:

    python -m skbio.test
    

    For users of Debian, skbio is in the Debian software distribution and may be installed using:

    sudo apt-get install python3-skbio python-skbio-doc
    

    快联官网下载安卓-旋风加速度器

    To get help with scikit-bio, you should use the skbio tag on StackOverflow (SO). Before posting a question, check out SO's guide on how to 安卓手机安装tunsafe. The scikit-bio developers regularly monitor the skbio SO tag.

    快联官网下载安卓-旋风加速度器

    Some of the projects that we know of that are using scikit-bio are:

    • QIIME
    • Emperor
    • Gneiss
    • An Introduction to Applied Bioinformatics
    • tax2tree
    • Qiita
    • ghost-tree
    • Platypus-Conquistador

    If you're using scikit-bio in your own projects, feel free to issue a pull request to add them to this list.

    快联官网下载安卓-旋风加速度器

    If you're interested in getting involved in scikit-bio development, see CONTRIBUTING.md.

    See the list of scikit-bio's contributors.

    快联官网下载安卓-旋风加速度器

    scikit-bio is available under the new BSD license. See COPYING.txt for scikit-bio's license, and the tunsafe安装包 for the licenses of third-party software that is (either partially or entirely) distributed with scikit-bio.

    快联官网下载安卓-旋风加速度器

    scikit-bio began from code derived from PyCogent and QIIME, and the contributors and/or copyright holders have agreed to make the code they wrote for PyCogent and/or QIIME available under the BSD license. The contributors to PyCogent and/or QIIME modules that have been ported to scikit-bio are: Rob Knight (@rob-knight), Gavin Huttley (@gavin-huttley), Daniel McDonald (@wasade), Micah Hamady, Antonio Gonzalez (tunsafe安卓百度云), Sandra Smit, Greg Caporaso (@gregcaporaso), Jai Ram Rideout (@jairideout), Cathy Lozupone (@clozupone), Mike Robeson (@mikerobeson), Marcin Cieslik, Peter Maxwell, Jeremy Widmann, Zongzhi Liu, Michael Dwan, Logan Knecht (@loganknecht), Andrew Cochran, Jose Carlos Clemente (@cleme), Damien Coy, Levi McCracken, Andrew Butterfield, Will Van Treuren (@wdwvt1), Justin Kuczynski (@justin212k), Jose Antonio Navas Molina (@josenavas), Matthew Wakefield (@genomematt) and Jens Reeder (@jensreeder).

    快联官网下载安卓-旋风加速度器

    scikit-bio's logo was created by Alina Prassas.

                                    猎豹加速器,猎豹nvp加速器,猎豹vp加速器官网  风驰加速器pc版下载,风驰加速器打不开,风驰加速器vp,风驰加速器vqn  胖鱼加速器电脑版下载,胖鱼加速器pc版下载,胖鱼加速器vnp,胖鱼加速器vqn  速云飞云手机官网,速蛙加速器官网,速蛙云最新官网,速蛙云官网打开方式  蓝兔子加速器pc版下载,蓝兔子加速器vqn,蓝兔子加速器2024,蓝兔子加速器vp  快客加速器下载地址,快客加速器免费永久加速,快客加速器用不了了,快客加速器vn  萤火虫加速器vnp,萤火虫加速器7天试用,萤火虫加速器跑路了,萤火虫加速器2024  小哈vp加速器下载地址,小哈vp加速器官方网址,小哈vp加速器mac下载,小哈vp加速器不能用了